Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 102: 380-390, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733562

RESUMEN

The gas and oil product derived from municipal solid waste (MSW) pyrolysis was upgraded by utilizing the interaction between the volatile compounds and the char and the mechanism involved is explored. The influences of operation parameters, including interaction temperature, char/volatiles mass ratio (C/V) and gas hourly space velocity (GHSV) of the volatiles on the distribution and property of the upgraded products were investigated. The results showed that the higher interaction temperature, higher C/V and lower GHSV favored the conversion of condensable volatiles into gas products, thus increasing the gas yield in the outlet stream. The highest gas yield (44.14 wt%) was obtained at 700 °C with the natural C/V ratio (0.8) and GHSV, which was twice of the gas yield in the volatiles. The chemical energy portion of gas increased to 8065 kJ/kgMSW from 3209 kJ/kgMSW at this condition. Syngas with H2/CO molar ratio of around 2 can be obtained at 700 °C with C/V ratio of 0.8 or at 600 °C with higher C/V ratios (C/V = 1.5-2.2). Oxygenates and acidity of the reformed oil products decreased; but monoaromatics and light polyaromatics concentration increased greatly. Heavy polycyclic aromatic hydrocarbons (PAHs) in the liquid products were degraded after volatiles/hot char interaction. Suitable conditions can be varied and recommended for obtaining different desired high-quality products based on this process.


Asunto(s)
Pirólisis , Residuos Sólidos , Gases , Calor , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...